home  |  suche  |  kontakt/johner  |  institut 
studierende  |  tech-docs  |  mindmailer 

Globale Operatoren

Fourier-Transformation

Werden Bilder als Folge von Farbwerten dargestellt, spricht man von einer Darstellung im Zeit-, Impuls- oder auch Orts-Raum. Aus diesem lassen sich Bilder injektiv in den sogenannten Frequenz-Raum überführen, in welchem nicht mehr die Farbwerte selbst, sondern die Frequenz- und Phasenanteile der zugrundeliegenden Punktfolge gespeichert werden. Große Sprünge innerhalb der Farbwertsequenz stehen dann für hohe Frequenzen, weiche Farbwertübergänge für niedrige Frequenzen. Die Fourier-Transformierte gibt schließlich an, wie durch alleinige Überlagerung von Sinusfunktionen verschiedener Frequenz und Phasenwinkel, der ursprüngliche Farbwertverlauf rekonstruiert werden kann.

Der Vorteil dieser Darstellung liegt in ihrer höheren Effizienz bei der Anwendung linearer Filter. Im Impuls-Raum bedeutet die Faltung der das Bild beschreibenden Farbwertfolge f<sub>i</sub> mit der Impuls-Antwort g<sub>μ</sub>(der Transformationsabbildung) des Filters eine Summation (der Gewichtung der Impulse mit der Impulsantwort) über die gesamte Filterlänge. Im Frequenzraum hingegen berechnet sich die Faltung als Produkt der Fourier-Transformierten mit der Frequenzantwort der Transformation . Dieser Vorteil bezüglich der Rechenzeit ist so groß, dass selbst der Aufwand der Hin- und Rücktransformation in den Frequenzraum in Kauf genommen werden kann. Dieser Aufwand lässt sich mit Hilfe der schnellen Fourier-Transformation (FFT) deutlich senken.

Von Vorteil ist des Weiteren die Vereinfachung, Filter direkt im Frequenzraum designen zu können, anstatt Impulsantworten bauen und ihre Wirkung auf das Spektrum berechnen zu müssen. Damit erübrigt sich gleichsam die Transformation der Impulsantwort g<sub>k</sub> in die zugehörige Frequenzantwort G(z).